零点看书 - 玄幻小说 - 大方广大在线阅读 - 箭号运算与康威链运算

箭号运算与康威链运算

    箭号运算:乘法是重复的加法:axb=a a …… a(有b个a),计算时是由右至左计的,3↑↑2=27,3↑↑3=3↑3=3↑3↑3=3↑27=7,625,597,484,987,3↑↑4=4↑3=3↑3↑3↑3=3↑7625597484987≈1.2580143×10↑3638334640024,3↑↑5=5↑3=3↑3↑3↑3↑3=3↑3↑7625597484987≈3↑1.2580143x10↑3638334640024,多于两个箭号时,3↑↑↑2=3↑↑3=2↑3=3↑3↑3=3↑27=7,625,597,484,987,3↑↑↑3=3↑↑3↑↑3=3↑3↑3=7625597484987↑3=7625597484987{3↑3……3。)。康威链运算:如果我们将a↑c↑b沿着增长的快慢排列成a→b→c的形式,那么可以重写迭代规则:1、a→b→1=a,2,a→1→c=a,3、a→b 1→c 1=a→(a→b→c 1)→c,我们可以试图对于这个表示方法进行拓展:使$a$变成一串参数,用$X$来代表它们。加上一些补充的规则之后,我们得到:1、a→b=a,2、x→1=x,3,x→1→P=Ⅹ,4、Ⅹ→b 1→P 1=x→(x→b→p 1)→P,第4个规则描述了迭代,而前三个描述了迭代的基本状态。这个符号由J.H.Conway提出。示例:显然的,有a→b→C=a↑[c]b,a→b→(a→b→n-1→2)→1,=a→b→(a→b→n-1→2),=a↑[a→b→(n-1)→2]b,a→b→n→2而:a→b→(a→b→n-1→3)→2,对于任意长度的康威链式箭头,也可以用同样的方法理解:x→b→p就是对于x→n→P-1的n进行迭代。a→b→n→4远大于a→b→n→3,a→b→c→n远大于a→b→n→4,a→b→c→d→n远大于a→b→c→n,……。可以很明显地看出来,康威链式箭头的表达能力要远远高于高德纳箭头表示法,可以将它缩减成a→n↑a来表示更大的数。